In this article, we will show one example of Simple Linear Regression Program.
Simple Linear Regression Program
Import libraries
Import the dataset
Splitting the dataset into the Training set and Test set
Training the Simple Linear Regression model on the Training set
Predicting the Test set result
Visualizing the Training set result
Visualizing the Test set result
The formula is as follow:
y = b0 + b1 * x1
y = Dependent Variable (DV)
b0 = Constant
b1 = Coefficient
x1 = Independent Variable (IV)
Here is one example of the program:
Import Libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
Import the dataset
dataset = pd.read_csv(‘dataset-file.csv’)
x = dataset.iloc[:, :-1].values
x = dataset.iloc[:, -1].values
Replace the dataset-file.csv file with your file and mention full path of the file.
Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)
Training the Simple Linear Regression model on the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
Prediction the Test set result
y_pred = regressor.predict(x_test)
Visualizing the Training set results
plt.scatter(x_train, y_train, color = ‘red’)
plt.plot(x_train, regressor.predit(x_train), color = ‘blue’)
plt.title(‘Name of the graph’)
plt.xlabel(‘Name of the x label’)
plt.ylabel(‘name of the y label’)
plt.show()
Visualizing the Test set results
plt.scatter(x_test, y_test, color = ‘red’)
plt.plot(x_train, regressor.predit(x_train), color = ‘blue’)
plt.title(‘Name of the graph’)
plt.xlabel(‘Name of the x label’)
plt.ylabel(‘name of the y label’)
plt.show()
We have shown Simple Linear Regression Program.
[Need assistance to fix this error or install tools? We’ll help you.]